Cellular Sheaves in Machine Learning
Aluno
André Ribeiro Guimarães
Data

Graph Neural Networks (GNNs) are designed to perform tasks on non-Euclidean relational data, with a myriad of applications. Nonetheless, most GNN architectures are built on the message-passing paradigm, which may lead to poor performance in heterophilic settings and indistinguishable representations as more layers are added, a phenomenon known as oversmoothing. Sheaf Neural Networks (SNNs) can be seen as a natural extension of GNNs, enabling the modeling of topological and geometrical inductive biases inherent in structured data. The modulated message passing mechanism within the cellular sheaf structure allows for more expressive interaction between nodes, which can circumvent the homophily assumption and mitigate oversmoothing, issues that commonly arise on graphs. The present work aims to introduce some of the principal recently developed architectures of SNNs, leveraging new versions of well-known GNN models, convolutional and attentional, as well as novel sheaf-based diffusion models. We also give a glimpse of how sheaves are being used in other contexts beyond traditional graph tasks.

Local

Data da Defesa: 27 de março de 2025, às 16h;

Link do zoom: https://fgv-br.zoom.us/j/6287410818?omn=97291206090

Membros da banca
Orientador: Diego Parente Paiva Mesquita - EMAp
Coorientadora: Ana Luiza da Conceição Tenório - EMAp
Membro Interno: Philip Thompson - EMAp
Membro Externo: Amauri Holanda de Souza Júnior - Instituto Federal do Ceará - IFCE
A A A
High contrast

Nosso website coleta informações do seu dispositivo e da sua navegação e utiliza tecnologias como cookies para armazená-las e permitir funcionalidades como: melhorar o funcionamento técnico das páginas, mensurar a audiência do website e oferecer produtos e serviços relevantes por meio de anúncios personalizados. Para mais informações, acesse o nosso Aviso de Cookies e o nosso Aviso de Privacidade.