Metric spaces, standardized and with internal product. Continuous functions in metric spaces, completeness, Banach Fixed Point Theorem, compactness, density, separability, continuous applications between metric spaces, Tietze extension theorem, Arzelà-Ascoli theorem, Stone-Weierstrass theorem. Topological spaces. Banach spaces, limited linear functionalities, convexity, the Hahn-Banach theorem. Hilbert spaces, orthogonality, Projection Theorem, Fourier analysis, Riesz Representation Theorem. Applications and examples.
Associated lines of research:
Basic Information
Mandatory:
- Bachman, Narici (2000). Functional Analysis. Dover.
- Saxe (2002). Beginning Functional Analysis. Springer.
- Kolmogorov, Fomin (1982). Elementos da Teoria das Funções e de Análise Funcional. MIR.
Complementary:
- Bollobás (1999). Linear Analysis. Cambridge.
- Friedman (1982). Foundations of Modern Analysis. Dover.
- Oliveira (2015). Introdução à Análise Funcional. IMPA.
- Bobrowski (2005). Functional Analysis for Probability and Stochastic Processes: An Introduction. Cambridge.
- Atkinson, Han (2009). Theoretical Numerical Analysis: A Functional Analysis Framework (TAM). Springer.
- Lages (2007). Espaços Métricos. IMPA.